内存分代
不同对象的生命周期不同,所以垃圾回收的方式也会不同,这样做是有助于提高回收的效率
虚拟机内存划分为三个代
年轻代(Young Generation)、年老代(Old Generation)和持久代(Permanent Generation)
其中年轻代
与老年代
属于堆内存中,垃圾回收主要针对于这两个代
年轻代有一个Eden区和两个或两个以上的Survivor区,对象先存在Eden区,当Eden区满了后,再存在Survivor区,都满了,说明对象生命周期较长,会存在老年代。
GC类型
Scavenge GC:作用在Eden区,针对于无法在Eden区存活的对象
Full GC:作用于整个堆;触发Full GC
的条件为
· 年老代(Tenured)被写满
· 持久代(Perm)被写满
· System.gc()被显示调用
·上一次GC之后Heap的各域分配策略动态变化
选择合适的垃圾回收算法
串行收集器
单处理器的机器:选择串行收集器
,可以使用-XX:+UseSerialGC打开。
并行处理器
多线程多处理器机器:对年轻代进行并行垃圾回收,用-XX:+UseParallelGC.打开;如果对年老代垃圾采用并行收集,用-XX:+UseParallelOldGC打开。
使用-XX:ParallelGCThreads=
推荐并行收集器
配置
最大垃圾回收暂停:指定垃圾回收时的最长暂停时间,通过-XX:MaxGCPauseMillis=
指定。 为毫秒.如果指定了此值的话,堆大小和垃圾回收相关参数会进行调整以达到指定值。设定此值可能会减少应用的吞吐量。 吞吐量:吞吐量为垃圾回收时间与非垃圾回收时间的比值,通过-XX:GCTimeRatio=
来设定,公式为1/(1+N)。例如,-XX:GCTimeRatio=19时,表示5%的时间用于垃圾回收。默认情况为99,即1%的时间用于垃圾回收。
并发收集器
保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用。使用-XX:+UseConcMarkSweepGC打开。
处理要点:降低垃圾回收是暂停的时间。
为什么会有停顿?
在每个年老代垃圾回收周期中,在收集初期并发收集器 会对整个应用进行简短的暂停,在收集中还会再暂停一次。第二次暂停会比第一次稍长,在此过程中多个线程同时进行垃圾回收工作。
浮动垃圾:有些垃圾可能在垃圾回收运行之后产生,这样的垃圾称为浮动垃圾,这些垃圾要在下个周期才能被处理。所以并发收集器需要有20%的空间来处理这些垃圾。
Concurrent Mode Failure:如果再回收垃圾时,堆没有足够的空间,并发模式失败,应用会被停止,只进行垃圾回收。
如何解决Concurrent Mode Failure?
通过设置-XX:CMSInitiatingOccupancyFraction=
指定还有多少剩余堆时开始执行并发收集
关于GC处理器的总结
串行处理器:
–适用情况:数据量比较小(100M左右);单处理器下并且对响应时间无要求的应用。
–缺点:只能用于小型应用
并行处理器:
–适用情况:“对吞吐量有高要求”,多CPU、对应用响应时间无要求的中、大型应用。举例:后台处理、科学计算。
–缺点:垃圾收集过程中应用响应时间可能加长
并发处理器:
–适用情况:“对响应时间有高要求”,多CPU、对应用响应时间有较高要求的中、大型应用。举例:Web服务器/应用服务器、电信交换、集成开发环境。
针对垃圾回收算法,可以有以下的推荐配置
堆大小配置
JVM最大堆的限制:32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制
典型设置
|
|
|
|
回收器的选择
吞吐量优先的并行收集器
典型配置
|
|
|
|
|
|
|
|
响应时间优先的并发收集器
典型配置:
|
|
|
|
辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-XX:+PrintGC:输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs][Full GC 121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails:输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs][GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用。输出形式:Application time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用。输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC: 打印GC前后的详细堆栈信息。输出形式:
|
|
-Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
调优原则
年轻代大小选择
响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
年老代大小选择
响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可能会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
- 并发垃圾收集信息
- 持久代并发收集次数
- 传统GC信息
- 花在年轻代和年老代回收上的时间比例
减少年轻代和年老代花费的时间,一般会提高应用的效率
较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
1. -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
2. -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
传统垃圾回收存在的问题
Full GC 会使应用带来暂停。如果应用的实时性要求很高,GC的暂停会带来很大的损失。分代垃圾回收对于应用的暂停处理不尽人意。为了达到实时性的要求。需要新的垃圾回收机制,它需要有如下的功能:
既支持短的暂停时间,有支持大的内存空间分配
增量收集
增量收集的方式在理论上可以解决传统分代方式带来的问题。增量收集把对堆空间划分成一系列内存块,使用时,先使用其中一部分(不会全部用完),垃圾收集时把之前用掉的部分中的存活对象再放到后面没有用的空间中,这样可以实现一直边使用边收集的效果,避免了传统分代方式整个使用完了再暂停的回收的情况。
当然,传统分代收集方式也提供了并发收集,但是他有一个很致命的地方,就是把整个堆做为一个内存块,这样一方面会造成碎片(无法压缩),另一方面他的每次收集都是对整个堆的收集,无法进行选择,在暂停时间的控制上还是很弱。而增量方式,通过内存空间的分块,恰恰可以解决上面问题。
G1算法
关于增量收集,涉及到Garbage Firest(G1)算法,读者可以参考这篇文章
还是做一个G1算法的简介吧:
他吸取了增量收集优点,把整个堆划分为一个一个等大小的区域(region)。内存的回收和划分都以region为单位;同时,他也吸取了CMS的特点,把这个垃圾回收过程分为几个阶段,分散一个垃圾回收过程;而且,G1也认同分代垃圾回收的思想,认为不同对象的生命周期不同,可以采取不同收集方式,因此,它也支持分代的垃圾回收。为了达到对回收时间的可预计性,G1在扫描了region以后,对其中的活跃对象的大小进行排序,首先会收集那些活跃对象小的region,以便快速回收空间(要复制的活跃对象少了),因为活跃对象小,里面可以认为多数都是垃圾,所以这种方式被称为Garbage First(G1)的垃圾回收算法,即:垃圾优先的回收。
缺点:在性能上有一些损失
G1的回收步骤为:
初始标记(Initial Marking)→并发标记(Concurrent Marking)→最终标记暂停(Final Marking Pause)→存活对象计算及清除(Live Data Counting and Cleanup)
调优工具参考
Jconsole : jdk自带,功能简单,但是可以在系统有一定负荷的情况下使用。对垃圾回收算法有很详细的跟踪。详细说明参考这里
JProfiler:商业软件,需要付费。功能强大。详细说明参考这里
VisualVM:JDK自带,功能强大,与JProfiler类似。推荐
如何用工具调优
主要观察内存的释放情况
堆信息查看
可查看堆空间大小分配(年轻代、年老代、持久代分配)
提供即时的垃圾回收功能
垃圾监控(长时间监控回收情况)
查看堆内类、对象信息查看:数量、类型等
对象引用情况查看
这些工具主要是为了获取堆信息,通过这些信息可以解决以下几个问题:
年老代年轻代大小划分是否合理
内存泄漏
垃圾回收算法设置是否合理
线程监控
线程信息监控:系统线程数量。
线程状态监控:各个线程都处在什么样的状态下
Dump线程详细信息:查看线程内部运行情况
死锁检查
热点分析
CPU热点:检查系统哪些方法占用的大量CPU时间
内存热点:检查哪些对象在系统中数量最大(一定时间内存活对象和销毁对象一起统计)
快照
快照是系统运行到某一时刻的一个定格。在我们进行调优的时候,不可能用眼睛去跟踪所有系统变化,依赖快照功能,我们就可以进行系统两个不同运行时刻,对象(或类、线程等)的不同,以便快速找到问题
举例说,我要检查系统进行垃圾回收以后,是否还有该收回的对象被遗漏下来的了。那么,我可以在进行垃圾回收前后,分别进行一次堆情况的快照,然后对比两次快照的对象情况。
内存泄漏检查
内存泄漏一般可以理解为系统资源(各方面的资源,堆、栈、线程等)在错误使用的情况下,导致使用完毕的资源无法回收(或没有回收),从而导致新的资源分配请求无法完成,引起系统错误。
年老代堆空间被占满
异常: java.lang.OutOfMemoryError: Java heap space
说明:
这是最典型的内存泄漏方式,简单说就是所有堆空间都被无法回收的垃圾对象占满,虚拟机无法再在分配新空间。
如上图所示,这是非常典型的内存泄漏的垃圾回收情况图。所有峰值部分都是一次垃圾回收点,所有谷底部分表示是一次垃圾回收后剩余的内存。连接所有谷底的点,可以发现一条由底到高的线,这说明,随时间的推移,系统的堆空间被不断占满,最终会占满整个堆空间。因此可以初步认为系统内部可能有内存泄漏。(上面的图仅供示例,在实际情况下收集数据的时间需要更长,比如几个小时或者几天)
解决:
一般就是根据垃圾回收前后情况对比,同时根据对象引用情况(常见的集合对象引用)分析,基本都可以找到泄漏点。
持久代被占满
异常:java.lang.OutOfMemoryError: PermGen space
说明:
Perm空间被占满。无法为新的class分配存储空间而引发的异常。这个异常以前是没有的,但是在Java反射大量使用的今天这个异常比较常见了。主要原因就是大量动态反射生成的类不断被加载,最终导致Perm区被占满。
更可怕的是,不同的classLoader即便使用了相同的类,但是都会对其进行加载,相当于同一个东西,如果有N个classLoader那么他将会被加载N次。因此,某些情况下,这个问题基本视为无解。当然,存在大量classLoader和大量反射类的情况其实也不多。
解决:
1. -XX:MaxPermSize=16m
2. 换用JDK。比如JRocket
线程堆栈满
异常:Fatal: Stack size too small
说明:java中一个线程的空间大小是有限制的。JDK5.0以后这个值是1M。与这个线程相关的数据将会保存在其中。但是当线程空间满了以后,将会出现上面异常。
解决:
增加线程栈大小。-Xss2m。但这个配置无法解决根本问题,还要看代码部分是否有造成泄漏的部分。
系统内存被占满
异常:java.lang.OutOfMemoryError: unable to create new native thread
说明:
这个异常是由于操作系统没有足够的资源来产生这个线程造成的。系统创建线程时,除了要在Java堆中分配内存外,操作系统本身也需要分配资源来创建线程。因此,当线程数量大到一定程度以后,堆中或许还有空间,但是操作系统分配不出资源来了,就出现这个异常了。
分配给Java虚拟机的内存愈多,系统剩余的资源就越少,因此,当系统内存固定时,分配给Java虚拟机的内存越多,那么,系统总共能够产生的线程也就越少,两者成反比的关系。同时,可以通过修改-Xss来减少分配给单个线程的空间,也可以增加系统总共内生产的线程数。
解决:
1. 重新设计系统减少线程数量。
2. 线程数量不能减少的情况下,通过-Xss减小单个线程大小。以便能生产更多的线程。
参考资料: